3.7.50 \(\int \frac {x^{3/2}}{\sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}}} \, dx\)

Optimal. Leaf size=73 \[ \frac {1}{2} \sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1} x^{3/2}+\frac {3}{4} \sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1} \sqrt {x}+\frac {3}{4} \cosh ^{-1}\left (\sqrt {x}\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 73, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.107, Rules used = {323, 330, 52} \begin {gather*} \frac {1}{2} \sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1} x^{3/2}+\frac {3}{4} \sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1} \sqrt {x}+\frac {3}{4} \cosh ^{-1}\left (\sqrt {x}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^(3/2)/(Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]]),x]

[Out]

(3*Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]]*Sqrt[x])/4 + (Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]]*x^(3/2))/2 + (3*Arc
Cosh[Sqrt[x]])/4

Rule 52

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ArcCosh[(b*x)/a]/b, x] /; FreeQ[{a,
 b, c, d}, x] && EqQ[a + c, 0] && EqQ[b - d, 0] && GtQ[a, 0]

Rule 323

Int[((c_.)*(x_))^(m_)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(2
*n - 1)*(c*x)^(m - 2*n + 1)*(a1 + b1*x^n)^(p + 1)*(a2 + b2*x^n)^(p + 1))/(b1*b2*(m + 2*n*p + 1)), x] - Dist[(a
1*a2*c^(2*n)*(m - 2*n + 1))/(b1*b2*(m + 2*n*p + 1)), Int[(c*x)^(m - 2*n)*(a1 + b1*x^n)^p*(a2 + b2*x^n)^p, x],
x] /; FreeQ[{a1, b1, a2, b2, c, p}, x] && EqQ[a2*b1 + a1*b2, 0] && IGtQ[2*n, 0] && GtQ[m, 2*n - 1] && NeQ[m +
2*n*p + 1, 0] && IntBinomialQ[a1*a2, b1*b2, c, 2*n, m, p, x]

Rule 330

Int[((c_.)*(x_))^(m_)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k =
Denominator[m]}, Dist[k/c, Subst[Int[x^(k*(m + 1) - 1)*(a1 + (b1*x^(k*n))/c^n)^p*(a2 + (b2*x^(k*n))/c^n)^p, x]
, x, (c*x)^(1/k)], x]] /; FreeQ[{a1, b1, a2, b2, c, p}, x] && EqQ[a2*b1 + a1*b2, 0] && IGtQ[2*n, 0] && Fractio
nQ[m] && IntBinomialQ[a1*a2, b1*b2, c, 2*n, m, p, x]

Rubi steps

\begin {align*} \int \frac {x^{3/2}}{\sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}}} \, dx &=\frac {1}{2} \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{3/2}+\frac {3}{4} \int \frac {\sqrt {x}}{\sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}}} \, dx\\ &=\frac {3}{4} \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} \sqrt {x}+\frac {1}{2} \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{3/2}+\frac {3}{8} \int \frac {1}{\sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} \sqrt {x}} \, dx\\ &=\frac {3}{4} \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} \sqrt {x}+\frac {1}{2} \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{3/2}+\frac {3}{4} \operatorname {Subst}\left (\int \frac {1}{\sqrt {-1+x} \sqrt {1+x}} \, dx,x,\sqrt {x}\right )\\ &=\frac {3}{4} \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} \sqrt {x}+\frac {1}{2} \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{3/2}+\frac {3}{4} \cosh ^{-1}\left (\sqrt {x}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 62, normalized size = 0.85 \begin {gather*} \frac {1}{4} \left (\sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1} \sqrt {x} (2 x+3)+6 \tanh ^{-1}\left (\sqrt {\frac {\sqrt {x}-1}{\sqrt {x}+1}}\right )\right ) \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[x^(3/2)/(Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]]),x]

[Out]

(Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]]*Sqrt[x]*(3 + 2*x) + 6*ArcTanh[Sqrt[(-1 + Sqrt[x])/(1 + Sqrt[x])]])/4

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 1.32, size = 136, normalized size = 1.86 \begin {gather*} \frac {\sqrt {\sqrt {x}-1} \left (\frac {5 \left (\sqrt {x}-1\right )^3}{\left (\sqrt {x}+1\right )^3}+\frac {3 \left (\sqrt {x}-1\right )^2}{\left (\sqrt {x}+1\right )^2}+\frac {3 \left (\sqrt {x}-1\right )}{\sqrt {x}+1}+5\right )}{2 \left (\frac {\sqrt {x}-1}{\sqrt {x}+1}-1\right )^4 \sqrt {\sqrt {x}+1}}+\frac {3}{2} \tanh ^{-1}\left (\frac {\sqrt {\sqrt {x}-1}}{\sqrt {\sqrt {x}+1}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[x^(3/2)/(Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]]),x]

[Out]

((5 + (5*(-1 + Sqrt[x])^3)/(1 + Sqrt[x])^3 + (3*(-1 + Sqrt[x])^2)/(1 + Sqrt[x])^2 + (3*(-1 + Sqrt[x]))/(1 + Sq
rt[x]))*Sqrt[-1 + Sqrt[x]])/(2*(-1 + (-1 + Sqrt[x])/(1 + Sqrt[x]))^4*Sqrt[1 + Sqrt[x]]) + (3*ArcTanh[Sqrt[-1 +
 Sqrt[x]]/Sqrt[1 + Sqrt[x]]])/2

________________________________________________________________________________________

fricas [A]  time = 0.40, size = 52, normalized size = 0.71 \begin {gather*} \frac {1}{4} \, {\left (2 \, x + 3\right )} \sqrt {x} \sqrt {\sqrt {x} + 1} \sqrt {\sqrt {x} - 1} - \frac {3}{8} \, \log \left (2 \, \sqrt {x} \sqrt {\sqrt {x} + 1} \sqrt {\sqrt {x} - 1} - 2 \, x + 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)/(-1+x^(1/2))^(1/2)/(1+x^(1/2))^(1/2),x, algorithm="fricas")

[Out]

1/4*(2*x + 3)*sqrt(x)*sqrt(sqrt(x) + 1)*sqrt(sqrt(x) - 1) - 3/8*log(2*sqrt(x)*sqrt(sqrt(x) + 1)*sqrt(sqrt(x) -
 1) - 2*x + 1)

________________________________________________________________________________________

giac [A]  time = 0.23, size = 59, normalized size = 0.81 \begin {gather*} \frac {1}{4} \, {\left ({\left (2 \, {\left (\sqrt {x} + 1\right )} {\left (\sqrt {x} - 2\right )} + 9\right )} {\left (\sqrt {x} + 1\right )} - 5\right )} \sqrt {\sqrt {x} + 1} \sqrt {\sqrt {x} - 1} - \frac {3}{2} \, \log \left (\sqrt {\sqrt {x} + 1} - \sqrt {\sqrt {x} - 1}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)/(-1+x^(1/2))^(1/2)/(1+x^(1/2))^(1/2),x, algorithm="giac")

[Out]

1/4*((2*(sqrt(x) + 1)*(sqrt(x) - 2) + 9)*(sqrt(x) + 1) - 5)*sqrt(sqrt(x) + 1)*sqrt(sqrt(x) - 1) - 3/2*log(sqrt
(sqrt(x) + 1) - sqrt(sqrt(x) - 1))

________________________________________________________________________________________

maple [A]  time = 0.06, size = 55, normalized size = 0.75 \begin {gather*} \frac {\sqrt {\sqrt {x}-1}\, \sqrt {\sqrt {x}+1}\, \left (2 \sqrt {x -1}\, x^{\frac {3}{2}}+3 \ln \left (\sqrt {x}+\sqrt {x -1}\right )+3 \sqrt {x -1}\, \sqrt {x}\right )}{4 \sqrt {x -1}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(3/2)/(x^(1/2)-1)^(1/2)/(x^(1/2)+1)^(1/2),x)

[Out]

1/4*(x^(1/2)-1)^(1/2)*(x^(1/2)+1)^(1/2)*(2*(x-1)^(1/2)*x^(3/2)+3*(x-1)^(1/2)*x^(1/2)+3*ln(x^(1/2)+(x-1)^(1/2))
)/(x-1)^(1/2)

________________________________________________________________________________________

maxima [A]  time = 0.46, size = 37, normalized size = 0.51 \begin {gather*} \frac {1}{2} \, \sqrt {x - 1} x^{\frac {3}{2}} + \frac {3}{4} \, \sqrt {x - 1} \sqrt {x} + \frac {3}{4} \, \log \left (2 \, \sqrt {x - 1} + 2 \, \sqrt {x}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)/(-1+x^(1/2))^(1/2)/(1+x^(1/2))^(1/2),x, algorithm="maxima")

[Out]

1/2*sqrt(x - 1)*x^(3/2) + 3/4*sqrt(x - 1)*sqrt(x) + 3/4*log(2*sqrt(x - 1) + 2*sqrt(x))

________________________________________________________________________________________

mupad [B]  time = 18.76, size = 429, normalized size = 5.88 \begin {gather*} 3\,\mathrm {atanh}\left (\frac {\sqrt {\sqrt {x}-1}-\mathrm {i}}{\sqrt {\sqrt {x}+1}-1}\right )+\frac {\frac {23\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^3}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^3}+\frac {333\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^5}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^5}+\frac {671\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^7}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^7}+\frac {671\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^9}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^9}+\frac {333\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{11}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{11}}+\frac {23\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{13}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{13}}-\frac {3\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{15}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{15}}-\frac {3\,\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}{\sqrt {\sqrt {x}+1}-1}}{1+\frac {28\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^4}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^4}-\frac {56\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^6}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^6}+\frac {70\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^8}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^8}-\frac {56\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{10}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{10}}+\frac {28\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{12}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{12}}-\frac {8\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{14}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{14}}+\frac {{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{16}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{16}}-\frac {8\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^2}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(3/2)/((x^(1/2) - 1)^(1/2)*(x^(1/2) + 1)^(1/2)),x)

[Out]

3*atanh(((x^(1/2) - 1)^(1/2) - 1i)/((x^(1/2) + 1)^(1/2) - 1)) + ((23*((x^(1/2) - 1)^(1/2) - 1i)^3)/((x^(1/2) +
 1)^(1/2) - 1)^3 + (333*((x^(1/2) - 1)^(1/2) - 1i)^5)/((x^(1/2) + 1)^(1/2) - 1)^5 + (671*((x^(1/2) - 1)^(1/2)
- 1i)^7)/((x^(1/2) + 1)^(1/2) - 1)^7 + (671*((x^(1/2) - 1)^(1/2) - 1i)^9)/((x^(1/2) + 1)^(1/2) - 1)^9 + (333*(
(x^(1/2) - 1)^(1/2) - 1i)^11)/((x^(1/2) + 1)^(1/2) - 1)^11 + (23*((x^(1/2) - 1)^(1/2) - 1i)^13)/((x^(1/2) + 1)
^(1/2) - 1)^13 - (3*((x^(1/2) - 1)^(1/2) - 1i)^15)/((x^(1/2) + 1)^(1/2) - 1)^15 - (3*((x^(1/2) - 1)^(1/2) - 1i
))/((x^(1/2) + 1)^(1/2) - 1))/((28*((x^(1/2) - 1)^(1/2) - 1i)^4)/((x^(1/2) + 1)^(1/2) - 1)^4 - (8*((x^(1/2) -
1)^(1/2) - 1i)^2)/((x^(1/2) + 1)^(1/2) - 1)^2 - (56*((x^(1/2) - 1)^(1/2) - 1i)^6)/((x^(1/2) + 1)^(1/2) - 1)^6
+ (70*((x^(1/2) - 1)^(1/2) - 1i)^8)/((x^(1/2) + 1)^(1/2) - 1)^8 - (56*((x^(1/2) - 1)^(1/2) - 1i)^10)/((x^(1/2)
 + 1)^(1/2) - 1)^10 + (28*((x^(1/2) - 1)^(1/2) - 1i)^12)/((x^(1/2) + 1)^(1/2) - 1)^12 - (8*((x^(1/2) - 1)^(1/2
) - 1i)^14)/((x^(1/2) + 1)^(1/2) - 1)^14 + ((x^(1/2) - 1)^(1/2) - 1i)^16/((x^(1/2) + 1)^(1/2) - 1)^16 + 1)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{\frac {3}{2}}}{\sqrt {\sqrt {x} - 1} \sqrt {\sqrt {x} + 1}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(3/2)/(-1+x**(1/2))**(1/2)/(1+x**(1/2))**(1/2),x)

[Out]

Integral(x**(3/2)/(sqrt(sqrt(x) - 1)*sqrt(sqrt(x) + 1)), x)

________________________________________________________________________________________